The use of roosting sites by animal societies is important in conservation biology, animal behaviour, and epidemiology. The giant-noctule bat (Nyctalus lasiopterus) constitutes fission-fusion societies whose members spread every day in multiple trees for shelter. To assess how the pattern of roosting use determines the potential for information exchange or disease spreading, we applied the framework of complex networks.
Results/Conclusions
We found a social and spatial segregation of the population in well-defined modules or compartments, formed by groups of bats sharing the same trees. Inside each module, we revealed an asymmetric use of trees by bats representative of a nested pattern. This network structure slows down the spread of diseases and the exchange of information reducing the role of the most used trees as transmission hubs. The implication for management is complex, affecting differently the cohesion inside and among colonies and the transmission of parasites and diseases. Network analysis can hence be applied to quantifying the conservation status of individual trees used by species depending on hollows for shelter.