PS 88-144 - Impacts of invasive browsers on demographic rates and forest structure in New Zealand

Friday, August 7, 2009
Exhibit Hall NE & SE, Albuquerque Convention Center
David M. Wright, Plant Sciences, University of Cambridge, Cambridge, United Kingdom, Richard P. Duncan, Institute for Applied Ecology, University of Canberra, ACT 2601, Australia and David A. Coomes, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
Background/Question/Methods

Assessing the large scale impact of deer populations on forest structure and composition is important because of their increasing abundance in many temperate forests. Deer are invasive animals and sometimes thought to be responsible for immense damage to New Zealand’s forests. We report demographic changes taking place among 40 widespread indigenous tree species over 20 years, following a period of record deer numbers in the 1950s and a period of extensive hunting and depletion of deer populations during the 1960s and 1970s.

Results/Conclusions

Across a network of 578 plots there was an overall 13% reduction in sapling density of our study species with most remaining constant and a few declining dramatically. The effect of suppressed recruitment when deer populations were high was evident in the small tree size class (30 – 80 mm dbh). Stem density decreased by 15% and species with the greatest annual decreases in small tree density were those which have the highest rates of sapling recovery in exclosures indicating that deer were responsible. Densities of large canopy trees have remained relatively stable. There were imbalances between mortality and recruitment rates for 23 of the 40 species, 7 increasing and 16 in decline. These changes were again linked with sapling recovery in exclosures; species which recovered most rapidly following deer exclusion had the greatest net recruitment deficit across the wider landscape, indicating recruitment suppression by deer as opposed to mortality induced by disturbance and other herbivores. Species are not declining uniformly across all populations and no species are in decline across their entire range. Therefore we predict that with continued deer presence some forests will undergo compositional changes but that none of the species tested will become nationally extinct.

Copyright © . All rights reserved.
Banner photo by Flickr user greg westfall.