Tuesday, August 3, 2010: 8:20 AM
303-304, David L Lawrence Convention Center
Anna C. Eklöf, Ecology and evolution, University of Chicago, Chicago, IL
Background/Question/Methods As a result of habitat destruction many ecological communities have a fragmented distribution and are built up of partially isolated local communities connected through dispersal of interacting species. The dynamics of such metacommunities is governed both by local processes (interactions among species coexisting within habitat patches) and regional processes (movement of species among habitat patches). Earlier theoretical work on simple metacommunities have mainly focused on the positive effects of space and dispersal for the coexistence of interacting species and hence for local and regional species diversity. However, it is plausible that dispersal might also pose some kind of risk to the dispersing individuals. Here we explore how such risks might affect the dynamics of metacommunities. We develop spatially and dynamically explicit models to investigate how the trophic structure (connectance) of local communities, the spatial structure of the metacommunity and the dispersal characteristics of species affect species extinction risks. Species extinction risks in these open communities are measured relative to the extinction risks in closed communities (i.e. no dispersal). Results/Conclusions
We show that the introduction of dispersal among initially closed local communities might lead to increased probability of local species extinction. The effects of dispersal depend on migration rate, movement pattern of individuals and the density of patches in the landscape. Specifically, when dispersal involves a risk, high migration rates, global dispersal and low patch density will all lead to increased probability of local species extinctions. Furthermore, the trophic structure of local communities plays a significant role in the response of metacommunities to changes in the regional processes.