PS 74-162
Regional and scale-specific effects of land use on amphibian diversity
Habitat loss and degradation influence amphibian distributions and are important drivers of population declines. Our previous research demonstrated that road disturbance, development and wetland area consistently influence amphibian richness across regions of the U.S. Here, we examined the relative importance of these factors in different regions and at multiple spatial scales. Understanding the scales at which habitat disturbance may be affecting amphibian distributions is important for conservation planning. Specifically, we asked: 1) Over what spatial scales do distinct landscape features affect amphibian richness? and 2) Do road types (non-rural and rural) have similar effects on amphibian richness? This is the second year of a collaborative, nationwide project involving 11 U.S. colleges integrated within undergraduate biology curricula. We summarized North American Amphibian Monitoring Program data in 13 Eastern and Central U.S states and used geographic information systems to extract landscape data for 471 survey locations. We developed models to quantify the influence of landscape variables on amphibian species richness and site occupancy across five concentric buffers ranging from 300m to 10,000m.
Results/Conclusions
Across spatial scales, development, road density and agriculture were the best predictors of amphibian richness and site occupancy by individual species. Across regions, we found that scale did not exert a large influence on how landscape features influenced amphibian richness as effects were largely comparable across buffers. However, development and percent impervious surface had stronger influence on richness at smaller spatial scales. Richness was lower at survey locations with higher densities of non-rural and rural roads, and non-rural road density had a larger negative effect at smaller scales. Within regions, landscape features driving patterns of species richness varied. The scales at which these factors were associated with richness were highly variable within regions, suggesting the scale effects may be region specific. Our project demonstrates that networks of undergraduate students can collaborate to compile and analyze large ecological data sets, while engaging students in authentic and inquiry-based learning in landscape-scale ecology.